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An analytic formula is obtained for Green’s function of the Helmholtz equat- 
ion in a rectangle. Along the rectangle sides boundary conditions containing 
higher order derivatives, and at its vertices boundary contact conditions are 

specified. Such boundary contact problem occurs in investigations of the acou- 

stic field in a rectangular space bounded by thin elastic walls. The present 

paper is a con~nua~on of papers [l, 21 where similar problems for the quarter- 

plane and half-band were considered, 

I.. Statement of the problem and examples. Weseek 
a solution of the two-dime~ional Helmholtx equation 

(A + k2P @, Y> = --6 (z - 5, Y - y,,) (1.1) 

in the rectangle 0 < x < a, 0 C y < b with boundary conditfons 

&(&, +(s,o)=o, L,(-&, -+w4=O (1.2) 

&(-&, ~)F(O,~)=O, L,(y& -~)wm=o (1.3) 

o<zi<b 
where P is the acoustic pressure in the medium, A is the Laplace operator, and 
k is the wave number which we assume to be complex (0 c arg k < z/4), 
thus allowing for absorption in the medium. The solution obtained below is, however, 
also valid in the case of perfect medium (arg k = 0) but under condition that k2 
is not an eigenvalue of the problem. The dependence on time is taken in the form 
of factor e-i@‘. The boundary operators LOG (a = 1, 2, 3, 4) are linear differen- 
tial operators of order Na with constant coefficients. We define their form by the 
formula 

La G5, 7) = v%l C-3”) + %2 (4”) 
(1.4) 

where nz,, and m,, are polynomials on which certain restrictions will be subsequen- 
tly imposed. 

The sought solution must be continuous in the considered region up to its boundary, 
except at the source point (x0, yo). 

In the case of the simplest Dirichlet boundary conditions (L, = 1) or those of 
Neumann (L, = r$ the stated problem has a unique solution which can be obtain- 
ed elementarily by expansion in Fourier series or by the method of images. When the 
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order of boundary operators exceeds unity, the solution looses its u~quene~, and con- 
tains hr arbitrary constants, whose number can be calculated by formulas 

iv = Nis + N,, + Nss + Nr4 
t 1. 5) 

h&=E 
( 

N,+N+ 

(a = 1, 2; 6 =” 3, 4) 
1 

where E (3) is the integral part of the number 5. 
The arbitrariness in the solution is eliminated by the inclusion in the problem form- 

ulation of iv boundary contact conditions that specify the modes at the region comer 

points 

&&P (X6, r&) + R,,P (“6, &J = 0 (a = 1, 2; B = 37 4; s = 
1, 2, , . . Nap) 

where 

and r,gsj and rmj (1 = 1, 2) are polynomials of their own arguments. 
E x a m p 1 e 1. The acoustic field of a point source in a rectangular region 

bounded by thin plates flexurally oscillating. In this case for the boundary operators 

we have 
L, (E? ?I) = 7/ (E4 - x-,7 + Ya’ ya = ~~~~~ (a = 1, 2, 3, 4) 

where xo is the wave number of flexural waves in a plate, p is the density of the 
medium, and D, is the plate cylindrical stiffness. 

For the complete definition of a particular model it is necessary to know the mech- 

anical conditions at plate joints and corner points of regions (weld, hinge, joint, crack, 
etc. ). At each vertex of the rectangle the mode is determined by four boundary cont- 
act equalities, hence in conformity with (1.5) we have here N = 16. We shall ass- 

ume that the plates are rigidly soldered. In such case the set of boundary contact eq- 

ualities for each of the corner points (sg, g,J (a = 1, 2; B = 3, 4) is of the form 
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The first two equalities indicate the absence of plate dislocation at their joints, 

and the third implies the invariabi~ty of the angle between the plates, and the fourth 
the absence of torque at the plate joints. 

Examples of other possible boundary operators are given in [S]. Taking into account 
longitudinal motions of plates would lead to operators L, of the seventh order,which 

would necessitate the specification of six boundary contact conditions at each of the 
rectangle vertices. 

E x a m p 1 e 2. The problem of sound transmittance through a partition separat- 

ing two identical rectangular rooms. A thin elastic partition separates a rectangular 

room bounded by thin elastic walls in two compartments. The acoustic field induced 

by a point source acting in one of the compartments is to be determined, 
We direct the 0~ -axis along the partition. The problem reduces to the deriva- 

tion of solution of the Helmholtz equation (1.1) (0 < 1 z I< a, 0 < y < b) with bound- 
ary conditions (1.2) satisfied for (0 < 1 z 1 < a); with boundary condition 

merging conditions 

+m41(__E) [ @yJy) + y-yq + 

m**(-~)[P~+O,~)--P~-oO,Y)l=O 

_LmI&g!_) [ @(+$y) - =yy + 

+y&)[P~+O,Y)-tP(-o,Y)l=O 

(0 < Y < 4 

and boundary contact conditions satisfied at point (0, O), (0, b), (t a, 0) , and (rt: a, 

b). 
Dividing the field into the even and odd pact with respect to the variable x 

p (x, Y) = P, (5, Y) + P- (z, Y>, P, (2, Y) = II, tP (2, Y) t P t- 3% dJ 

we decompose the problem into two, each of which can be considered in the region 

O<x< a, o<y<b. 
If only the flexural oscillations of the partition are taken into account, the merg- 

ing conditions assume the form 

1 8’ 
-- ( --G4 ,[ ap 

(+ 
0, 

Y) 
8P 

(- 0, Y) 2 ax* a2 + ax 1 + 
~4IP(+O,Yf--P--,Y)I=O 

apt+ 0, Y) ap (-- 0, Y) 
ax = ax 

In this case the odd problem differs from that in Example 1 only by the doubling of 
some coefficients, and in the even problem when x = 0 we have the Neumann eon- 
dition. 
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E x a m p 1 e 3. The problem of acoustics of a rectangular room divided by two 
perpendicular partitions into four identical compartments. Dividing the field into even 

and odd parts with respect to space variables reduces the problem to four independent 
problems of the considered here type. 

Problems whose statement contains boundary conditions of the “second order”(bound- 

ary cont%A conditions) are usually called boundary contact problems [4]. The tradit- 
ional procedure for finding an analytic solution of the boundary contact problem pres- 
umes the preliminary derivation of the general solution, i. e, a solution that satisfies 
all conditions of the problem, except the boundary contact ones. In two-dimensional 
problems such solution contain a certain number N of additive arbitrary constants (in 

the considered case A” is determined by formulas (1.5)). Such general solution can 

be presented as the mm of the particular solution P, of the non-homogeneous prob- 

lem and of the general solution Q of the homogeneous problem. 
The points of boundary at which the boundary contact conditions are imposed are 

called contact points. On the assumption that the point source does not act at contact 

points function P 0 can be selected so as to have continuous derivatives with respect 

of coordinates of all orders, which appear in the boundary contact conditions. Such 

selection of P, is single-valued. The obtained below explicit formula for P, im- 

plies in this case that this field has continuous derivatives of all orders at contact points. 

The term Q represents the field radiating from the contact points. The field Q 
itslef is continuous in the considered region up to the boundary but carries in it discon- 

tinuities of derivatives of the complete field P at contact points. 
To facilite the derivation of solution both components of the field are determined 

separately. It is advantageous to keep in mind the results of Cl. 2] where solutions of 

similar problems were obtained. 

2. The particular solution of the nonhomogene- 
o u s p i: o b 1 e m. Let us first consider the auxilliary problem of finding a solution 

of the Helmholtz equation (1.1) in the band (1 3: 1 < oo, (j < y < b) with boundary 

condition (1.2) satisfied for all z E (- oo, oo). The solution is assumed to be 

exponentially decreasing as \ 5 1 --+ 00. In other words we have to determine Green’s 

function for an infinite plane wave guide the motion of whose walls is defined by Eqs. 

(1.2). we denote the sought solution by PI and expect it to be of the form 

1 O” 
4n 5 B1 (h) exp (ih.r - yv) dh -I- 

--m 

1 O3 
z-i S 13% (h) exp [ias - 1’ (b - Ij)ldh, y = Jfha - k2 

(2.1) 

Selection of the radical is traditional [l]. The first right-hand side term represents 

the fundamental solution of the Helmoltz equation (1.1) for an infinite medium, and 
the second and third terms specify the waves reflected by the wave guide walls. The 

substitution of expression (2.1) into boundary conditions (1.2) yields a linear system 
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for the det~mination of the m&own functions Bi (h) and Bs f?.,). After calculat- 

ions we obtain 

Pl(% Y> = & s D (b y_, Y,> exp Iih (J: - $0) dh 
(a. 2) 

D (h, Ya Y,) = JA (ha Y-1 4 09 Y+) 
as &I 

Y&2 (Q = 41, exp (YN - W,” exp (-_yb) 
Y4 Pb sd = 4 *xP (YY) - a,(l exp Gyy) 
yD2 (h Y) = 1, exp Iy (b - y)J - l$ exp C-y (b - y)J 
la = la (a.) = -Y%a (h2) + ~a2 (h2) 

b” = Lo (JJ = ymccl (X2) + ma2 (ha) 

f&k = Y + Yo * I Y - Y, 1 (a = 1,2) 

hndions h. @h DI &, Y>, and D, (h, 9) are even integral functions of the 
variable h. We assume that for 0 < arg k < 44 function L)ls (A) has no real 

roots. This limitation imposed on the properties of functions II (h) and 4 (A) is 

obvious from the physical point of view, since real roots of the dispersion equation 
correspond to wave numbers of regular undamped waves which are not possible in a 

wave guide filled by an absorbing medium, If arg k = 0 , i. e. in the case of a 

wave guide filled by a perfect medium, some of the roots of L),s Q may appear 
on the real axis, The integration path in (2.2) must be shifted in such case from the 

real axis so that the respective poles are bypassed in conformity with the principle of 

limit absorption. 
We transform the integral in (2.2) into a sum using the theorem on residues 

(2.3) 

D, (h Y-9 Y,) = DI (5, Y-J 4 (A, Y,) 
W2 @I / di. 

where h, are roots of function D,, (A) which for 0 < argk < n/4) lie in 

the upper half-plane, 
It is possible to eliminate symbols Y_ and Y+ from formula (2.3). 

From the definition of .%, as the root of D,, (h) f6llow the following equalitieJ: 

Using, as an example, the first of these, we obtain the relationships 
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We shall use for P, the representation (2.3). To obtain the sought field P, it 
is necessary to add to P, the waves reflected from the side walls z = 0 and 5 

= a of the considered space 

The substi~tion of (2.4) into boundary conditions (1.3) yields a system of linear equat- 
ions for the determination of the reflection coeffxcients A, (%,) and 4 &)+ 
After some transformations we obtain 

Pofa Y) = +z Z&L), (A,, Y..., Y+) A (h,, z-9 s+) 
d 

i&A, (h) = nsnd exp (-iha) - n3Qn40 exp (iha) 

ihb, (h, x) = tz3 exp (--ikr) - n,O exp (ik) 

iXA, (A, x) = n, exp I---A (a - 41 - npo exp lib (a 

% = n, (V = ihm,t (kZ - ?%*) + ?n,, (P - h*) 

h0 = G* (h) = n, (4) (a = ‘3, 4) 

2% =x+~*c,t-l~-~ol 

Functions y13 (f h) and n4 (A$) are polynomials and Aa (h), A, (h, 
X)t and A4 (h, x) are even integral functions of the variable A. Functio~~~*~~) 

and AM (h) have no common roots.This restriction on the properties of boundary oper- 
ators L,(a = 2, 2, 3, 4) is reasonable, since otherwise a resonance conversion 
of the field into infmity would occur in spite of absorption in the medium. 

0 1 
Fig. 1 

The disposition of roots of fun- 
ctions D, (h) and Asr (h) is 
diagrammat~~a~y shown in Fig, 1 
by small circules and dots, respect- 
ively, In the coordinate origin ne- 
ighborhood the distribution of KMS 
is irregular, it is determined by the 
particular specification of boundary 
operators. The roots &* R) 
asymptotically approach roots sh 
yb, as 1 h [ --f oo + and roots 
&, (A) asymptotically tend to roots 
sin ha. 

The equality (2.5) defines the 



On the acoustic field of a point source 333 

expansion of function 

Liouville problem for 
integral representation of PO (3, y) 

PO (X, Y) in a Fourier series in eigenfimctions of the Sturm - 

the variable y. Using the theorem on residues we pass to the 

(2.6) 

where h is the contour which divides the roots of functions D12 (h) and As4 (1) 
and the roots of D1, (A) lie on the left of the contour nm, and consists of two branch- 

es that are symmetric about the coordinate origin. In Fig. 1 the contour A is Shown 

by dash lines. Owing to the oddness of the integrand formula (2.6) is unaffected by the 

change of sign of the variable of integration. It is convenient because it maintains 

the equilvalence of the space variables x and y. Thus using the theorem on residues 

for the region comprised between the branches of contour A we revert to representat- 

ion (2.5), and applying the same reasoning to the region outside the branches of cont- 
our A we obtain an analogousexpansion in which appear the eigen functions of the 

Sturm - Liouville problem for the variable x. 

3, General solution of the homogeneous problem. 
In this case the general solution Q of the homogeneous problem is of the form 

0 = Qls + QM + Qss + Qw 
where Qas (c8 = 1,2; p = 3, 4) 
j/e) of the considered region, 

is the field radiating from the corner point (x6, 
For simplicity we derive the analytic expression for 

Q by analogy to the corresponding components of the field in problems considered in 

El, 25 
Green’s function of the Helmholtz equation for region x > 0 and y > 0 was 

obtained in [l] under boundary and boundary contact conditions similar to those consid- 
ered here. We use coordinates {x0, I/,) of the point of application of the source as 
the separate arguments of function P, . The particular solution of the nonhomogen- 

eous problem in [l] in the notation used here is of the form of the sum of source fields 
and three of its representations 

PO (x, Y, xotat Yoflo) = & S{ expf~~(x-x0:O)-YIY-Y0fl- 
Al 

y exp [ih (5 - x0] - y (y + yo)] - 2 exp (ih (5 + zo) - 

rlY-YOII + 5 exp P (3 + $0) - Y (Y + yo)l} $ 
where & is a certain contour that separates roots E, which lie in the upper half- 
plane from the remaining roots of functions & and n,. Let us define the form of 

pa (29 I!, 201 Yo) when the field source is transferred to the contact point. We have 
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Let us compare 
problem in Cl] 

this formula with the corresponding solution of the homogeneous 

where qN+ (h’) is an even polynomial of 2N - 2 power with arbitrary coeffic- 
ients, In (3.1) instead of qN-1 (As) we have an even polynomial of power higher 
by two, and known coefficients. A similar correspondence exists between PO and 
QCG (a = 1, 2) in the problem solve1 in [2] (the region considered in [Z] was a semi- 

infinite plane wave guide 0 < z < cm, 0 < y < b, with two contact points). 

Let us revert to our problem. After passing to the limit (x,,, ye) +- (0,O) we 
obtain 

Hence the field Qrs should be expected to be of the form 

Q13 is, Y) = & 5 D~~~~~~~~~’ ~~~~*_~~~~) dh 
A 

(3.2) 

Since this formula was obtained on the basis of certain analogies, and not by a syste- 
matic procedure, it needs verification. The validity of the following relationships: 

(A + k2)D, (h, y)A, 0,. ix) = 0 

L4& Y&j &(h, O)&(h, x) = ~~~(~~A~(~, x) 

L(&' - &j &(X, b)&(h. x) = 0 

L4&, $1 Da@, Y)&@, 0) = Da& y)A,,(h) 

L,(& -g) Dz@, ~~A~(~, a) = 0 

can be proved by direct differentiation. 
It is, thus, evident that the homogeneous Helmoltz equation and of the second 

boundary conditions of (1.2) and (1.3) are satisfied, Let us consider the remaining 

two boundary conditions. We have 

&(& I gj Q13 (x, 0) = -& 5 A~~~~~) k&v,,-1 (A21 dh 

b(& &, Ql3(0, Y) = &i %,(,hih;) hQN*s-l (h9dh 

For 0(x< d the integrand in the first of these equalitia ex~nentially de- 
creases as 1 Im 1 f -+ CXI and has no singularities outside the branches of contour 

A . Using &e theorem on residues for the region outside the branches of contour 

A we obtain that LlQla (x,0) = 0. The equality La Q13 (0, y) = 0 follows 

similarly from the theorem on residues applied to the region comprised between the 



On the acoustic field of a point source 335 

branches of contour A. 
The continuity of Q13 in the coordinate origin neighborhood is implied by the 

uniform convergence of the integral in (3.2). 

Expressions for Q14, Qas, and Qs4 can be derived from (3.2) by cyclic replace- 

ment of subscripts 1, 2 and 3, 4. 
Thus the general solution of the homogeneous problem has been derived. Formula 

(3.2) contains the necessary number N13 of arbitrary constants, because of which, 

using boundary contact conditions, a linear system is obtained for the determination 

of these constants, which contains the same number of equations and unknowns. The 

formal application of like boundary operators R,+ and R,, to Qcce (a = 1, 2 
and p = 3, 4) generally results in divergent integrals. To make the regularization 

of these integrals possible the boundary contact operators must satisfy certain special 

requirements. The respective conditions were stated in [l, 21. When these conditions 
are satisfied, regularization can be carried out by the method described in [2]. 
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